It has been acknowledged that this proof was displayed as a result of google search:
Fermat's Little Theorem
If
(1)
|
(2)
|
(3)
|
This is a generalization of the Chinese hypothesis and a special case of Euler's totient theorem. It is sometimes called Fermat's primality test and is a necessary but not sufficient test for primality. Although it was presumably proved (but suppressed) by Fermat, the first proof was published by Euler in 1749. It is unclear when the term "Fermat's little theorem" was first used to describe the theorem, but it was used in a German textbook by Hensel (1913) and appears in Mac Lane (1940) and Kaplansky (1945).
The theorem is easily proved using mathematical induction on
(4)
|
(5)
|
(6)
|
(7)
|
Fermat's little theorem shows that, if
Composite numbers known as Fermat pseudoprimes (or sometimes simply "pseudoprimes") have zero residue for some
2 | 341 | 22 | 69 | 42 | 205 | 62 | 63 | 82 | 91 |
3 | 91 | 23 | 33 | 43 | 77 | 63 | 341 | 83 | 105 |
4 | 15 | 24 | 25 | 44 | 45 | 64 | 65 | 84 | 85 |
5 | 124 | 25 | 28 | 45 | 76 | 65 | 112 | 85 | 129 |
6 | 35 | 26 | 27 | 46 | 133 | 66 | 91 | 86 | 87 |
7 | 25 | 27 | 65 | 47 | 65 | 67 | 85 | 87 | 91 |
8 | 9 | 28 | 45 | 48 | 49 | 68 | 69 | 88 | 91 |
9 | 28 | 29 | 35 | 49 | 66 | 69 | 85 | 89 | 99 |
10 | 33 | 30 | 49 | 50 | 51 | 70 | 169 | 90 | 91 |
11 | 15 | 31 | 49 | 51 | 65 | 71 | 105 | 91 | 115 |
12 | 65 | 32 | 33 | 52 | 85 | 72 | 85 | 92 | 93 |
13 | 21 | 33 | 85 | 53 | 65 | 73 | 111 | 93 | 301 |
14 | 15 | 34 | 35 | 54 | 55 | 74 | 75 | 94 | 95 |
15 | 341 | 35 | 51 | 55 | 63 | 75 | 91 | 95 | 141 |
16 | 51 | 36 | 91 | 56 | 57 | 76 | 77 | 96 | 133 |
17 | 45 | 37 | 45 | 57 | 65 | 77 | 247 | 97 | 105 |
18 | 25 | 38 | 39 | 58 | 133 | 78 | 341 | 98 | 99 |
19 | 45 | 39 | 95 | 59 | 87 | 79 | 91 | 99 | 145 |
20 | 21 | 40 | 91 | 60 | 341 | 80 | 81 | 100 | 153 |
21 | 55 | 41 | 105 | 61 | 91 | 81 | 85 |
No comments:
Post a Comment